Covalent Attachment of Daptomycin to Ti6Al4V Alloy Surfaces by a Thioether Linkage to Inhibit Colonization by Staphylococcus aureus

نویسندگان

  • Chang-Po Chen
  • Rui-Yan Jing
  • Eric Wickstrom
چکیده

Infections are a devastating complication of titanium alloy orthopedic implants. Current therapies include antibiotic-impregnated bone cement and antibiotic-containing coatings. Daptomycin (DAP) (1) is a novel peptide antibiotic that penetrates the cell membranes of Gram-positive bacteria. Few DAP-resistant strains have appeared so far. We hypothesized that when DAP covalently bonded via a flexible, hydrophilic spacer it could prevent bacterial colonization of titanium alloy surfaces. We designed and synthesized a series of DAP conjugates for bonding to the surface of Ti6Al4V foils through tetra(ethylene glycol) spacers via thioether linkages. The stability and antimicrobial activity of the attached conjugates were evaluated using Staphylococcus aureus ATCC 25923. Colonization of the Ti6Al4V foils was inhibited by 72% at 8 h and 54% at 24 h. The strategy described in this report provides a new, more facile way to prepare bactericidal Ti6Al4V implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-protecting bactericidal titanium alloy surface formed by covalent bonding of daptomycin bisphosphonates.

Infections are a devastating complication of titanium alloy orthopedic implants. Current therapy includes antibiotic-impregnated bone cement and antibiotic-containing coatings. We hypothesized that daptomycin, a Gram-positive peptide antibiotic, could prevent bacterial colonization on titanium alloy surfaces if covalently bonded via a flexible, hydrophilic spacer. We designed and synthesized a ...

متن کامل

Detection of Intracellular Adhesion (ica) and Biofilm Formation Genes in Staphylococcus aureus Isolates from Clinical Samples

Background: The nosocomial infections that cause the establishment of biofilms on the embedded biomedical surfaces are the leading cause of sepsis and are often related to colonization of implants by Staphylococcus epidermidis. Materials and Methods: A total of 40 clinical S. aureus isolates were collected from Zabol, Iran. The ability of these strains to form biofilm was determined by microli...

متن کامل

Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces.

The human pathogen Staphylococcus aureus is renowned for the rapid colonization of contaminated wounds, medical implants, and food products. Nevertheless, little is known about the mechanisms that allow S. aureus to colonize the respective wet surfaces. The present studies were therefore aimed at identifying factors used by S. aureus cells to spread over wet surfaces, starting either from plank...

متن کامل

Frequency of Methicillin-resistant Staphylococcus aureus Nasal Colonization among preschool and school children under 14 years old in Urmia

Background and Aims: Nasal Colonization with Methicillin Resistant Staphylococcus aureus (MRSA) is known as an important risk factor in the development of dangerous infections. Materials and Methods: The present study seeks to investigate the prevalence of MRSA nasal colonization among the preschool and school children under 14 in Urmia. To do so, specimens for culture were obtained fro...

متن کامل

The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) Genes among Clinical Isolates of Staphylococcus aureus from Hospitalized Children

Background:Isolates of Staphylococcus aureus express a myriad of adhesive surface proteins that play important role in colonization of the bacteria on nasal and skin surfaces, beginning the process of pathogenesis. The aim of this study was to screen several of the Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) genes among the isolate of S. a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017